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Alntract--Thls Is the second of two papers on countercurrent gas-liqmd flow floodmg m an elbow 
of which the upper hmb ts ve~cal and the lower hmb is horizontal or shghtly reclined. In part I, 
experiments were described in which flooding limits were measured in mr-water flow m various 
pipe elbows of this type; flooding was found to be caused by the onset of slugging at a hydraulic 
jump which formed in the lower lnnb of the elbow close to the bend. In the present paper a 
theoretical model is developed by which the flooding limits for this elbow geometry can be predJcted. 
The model assumes that a smooth straufied flow exists in the lower hmb of the elbow, w~th a free 
outfaU at the emt. Flooding is assumed to coincide with slug formation just downstream of the 
bend where the hquid depth is ~eatest. The model gives a reasonable prediction of the observed 
effects on the flooding limit of the length-to-&ameter ratio and angle of inclination of the lower leg 
of the elbow. 

1. INTRODUCTION 

In a previous paper (Siddiqui et al. 1986), referred to subsequently as part I, experiments 
were described in which flooding limits were measured for air-water flow in elbows formed 
by vertical and horizontal or near-horizontal pipes. The main observations were that: 

fi) flooding in the elbow geometry occurred at gas flow rates much smaller than those 
needed to produce flooding in a vertical pipe of equal diameter; 

(ii) flooding inception coincided with unstable wave formation (slugging) in the lower leg 
of the elbow, close to the bend; 

(iii) the gas flow rate for flooding depended strongly on the length-to-diameter ratio and 
inclination of the lower leg of the elbow, and on the radius of curvature of the bend. 

In this paper a theoretical model is described which provides a convenient method for 
predicting the flooding limit in an elbow between a vertical and a horizontal or near- 
horizontal pipe. The analysis is based on the fundamental assumption that flooding is due 
to the onset of slugging in the lower leg of the elbow close to the bend, where the liquid 
depth is greatest. The gas and liquid flow rates at the flooding point are calculated by 
solving the phasic mass and momentum conservation equations for the stratified two-phase 
flow in the lower limb of the elbow. 

Gardner (1983) recently developed a model for flooding in a horizontal pipe by con- 
sidering the motion of lossless waves in a stratified flow. However, when applied to the 
case of a 90 ° vertical-to-horizontal elbow, his model does not describe the observed effect 
of the horizontal pipe length-to-diameter ratio on the flooding limit; nor is the effect of 
pipe inclination accounted for. More importantly, Gardner's model predicts that the flow 
rate for zero liquid downflow (i.e. complete liquid carry-up) is similar for horizontal and 
vertical tubes. This is inconsistent with experimental observations, which show that the gas 
flow rate needed to prevent liquid penetration into a 90 ° elbow can be four or five times 
smaller than that for the equivalent vertical tube. The model described in the present pa- 
per predicts the geometrical trends, and the limit for complete carry-up, with reasonable 
accuracy. 
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2 DESCRIPTION OF THE PHENOMENA 

The situation of |nterest Is shown m figure 1. A long tube mchned at an angle ~ to 
the horizontal (a positive value of ~ will be used to denote an upward mclinatmn) Is 
connected at inlet to a vertical tube by an elbow. Liquid at a constant flow rate is introduced 
into the vertical leg at A through a T-piece or porous sinter, etc. (not shown) and gas at 
a constant flow rate is introduced at the tube exit E. The liquid flows down the vertical 
tube as a wall film, and then forms a stratified flow m the lower hmb of the elbow 

We assume that the velocity of the liquid stream entering the lower hmb of the elbow 
from the bend at B is initially supercritical (i.e. above the velocity of propagation of grawty 
waves). A transition to subcritical flow is assumed to take place at a hydraulic jump at C, 
which is the point of maximum liquid depth. A free out-fall is assumed at E, implying that 
the liquid velocity at E is equal to the critical velocity (Chow 1959). Between C and E the 
liquid depth steadily decreases while the liquid velocity |ncreases. 

In the experiments described in part I the above situation was observed experimentally. 
It was observed that as the air flow was increased the hydrauhc jump moved close to the 
elbow B. When the air flow rate reached a critical value, unstable wave format|on (slugging) 
occurred at the crest of the hydraulic jump, where the air velocity was h|ghest, leading to 
expulsion of water from the tube inlet (flooding). Thus, for the flow geometry shown in 
figure 1, flooding is identified with the inception of a wave instability at a hydraul|c jump 
located in the lower leg of the elbow close to the bend. 

3. THEORY 

To predict the gas and liquid flow rate at the flooding point for the geometry in figure 
1 we assume, as described above, that flooding coincides with the onset of slugging at the 
hydraulic jump located at point C close to the pipe bend. The gas flow rate at slugging is 
related to the height of the jump by the purely empirical equation given in part I. A second 
equation is provided by the condition that the liquid velocity at the exit E Is equal to the 
critical velocity. Finally the conditions at B and E are related by solving the conservation 
equations for a stratified flow between B and E using a two-fluid formulation. In summary, 
therefore, the flooding curve is calculated from a theoretical analysis of near-horizontal 
stratified flow coupled with a purely empirical correlation for the onset of slugging at the 
hydraulic jump. Details are described below. 

3.1 Instability criterion 
It was observed experimentally in part I that the onset of slugging at the hydraulic 

jump near the pipe bend could be described using the equation 

= [1]  
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F~gure I Flow system under cons~deratmn 
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wherej~ is the nondimensional volumetric flux of phase k defined by 
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a k U k  [2] 
j ~  = ( g D p L o / p k ) l / 2 "  

Here ct,, Pk, and Uk are, respectively, the volumetric concentration, density, and actual 
velocity of phase k (k = G denotes the gas phase and k = L denotes the liquid phase). 
g and D are the acceleration due to gravity and the pipe diameter, respectively, and 

PLO = PL - P~" 
In [1], the fac tor j~  is a constant, which was found experimentally to be approximately 

equal to 0.2; ct~ denotes the void fraction at the location of the hydraulic jump, where the 
liquid depth is greatest. 

3 .2  Ca lcu la t ion  o f  the  s t ra t i f i ed  f l o w  

We consider the horizontal stratified countercurrent flow in the lower limb BE of the 
elbow shown in figure 1. Assuming a steady incompressible flow and neglecting interphase 
mass transfer and surface tension, the one-dimensional mass and momentum conservation 
equations can be written, respectively, as (Haneox et  aL 1980) 

( aku , )  = 0 ,  [3] 0x 

- -  a ~ k  a P ,  aa k 
a k P k U k  - -  "~- a k  - (P, - P k )  - -  - -  r~k  -- Tt ,  - a k P k g  sin ¢~ , [4] 

Ox Ox Ox 

where x is the distance from C, Pk is the pressure in the bulk phase k, P~ is the interface 
pressure, and r ~k and ~',k denote the force acting on phase k per unit flow volume due to 
wall shear and interfacial shear, respectively, and ~b is the upward inclination of the pipe. 
The overbars refer to phase-average quantities, defined by 

1; 
ak ---- ~'~k ak d,4 , 

At 

where A k is the portion of the pipe area occupied by phase k. 
Equation [4] can be transformed to a more convenient form if the reasonable assumption 

is made that the pressure variation over the cross section of each phase is due to hydrostatic 
forces only. It then follows that 

P *  = P~ + P * g  (Y ,  - Y k ) ,  [5] 

where y, is the elevation of the interface, and Yk the elevation of the centroid of A,, both 
referred to an arbitrary datum. Y k  is given by 

_ i f  ydA.  [6] 
At 

Substituting [5] into [4], and using [6], the momentum equation for phase k becomes 

_ _  aP, ,4 aak a k p ~ k  a'Uk + ak ~ + (-)* akpk, g 
Ox ax  ~ Ox 

--- - ~'~, - r a  - a , p , g  s i n  ~b ,  [7]  

where S, is the interface width (see figure 2), A is the duct area, and 

- 1 for k = G, (-) ,  = 

+1 fo rk  = L .  

Note the [7] is applicable to a duct of arbitrary constant cross section. 
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Figure 2 Stratified flow geometry 

The momen tum source terms r ~,k and r, ,  can be expressed in terms of friction factors. 
By geometry we have, referring to figure 2, 

and 

SG SL 
~'., = - I~'"L ~-. ~-., = t ~-';I ~ -  [8] 

"r,g = -~',t = -T~ I S ,  
A [91 

where Sk denotes the tube perimeter in contact  with phase k,  5', is the interface width, and 
r "  and r "  ~, , are the wall and interracial shear stresses, respectively. 

The wall stresses are expressed in terms of smooth- tube  friction factors fwk as 

where 

f~a  = Co  Re~", f . t .  = C z R e Z  m. [11] 

Note  that  u-k in [10] is the actual phase velocity rather than the superficial velocity. For  
turbulent flow we use coefficients Ca = CL = 0.046, n = m = 0.2; for laminar flow we 
use Co = CL = 16, n = m = 1. Following Agrawal  et al. (1973) the Reynolds numbers  
are defined by 

UkDEk 
R e ,  -- - -  , 

Vk 
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where Vk is the kinematic viscosity of phase k, and the Dek are hydraulic diameters defined 
by 

4A  G 
D Ea - -  ( S  a "+" S ,) ' 

4 A  L 
D F d . - -  

SL 

[12] 

As a first approximation the interface is assumed to be hydrodynamically smooth, and the 
interfacial shear stress is taken as being roughly equal to the shear stress at the wall in the 
part of the duct occupied by the gas phase, i.e. ~r~ = ~"~. A similar assumption was made 
by Taitel & Dukler (1976) in their analysis of flow regime transitions in cocurrent stratified 
flow. The effect of using other formulations for interfaeial shear is discussed in section 3.5 
below. 

Using the fact that a a  + aL = 1, the conservation equations [3] and [7] can be solved 
for the derivatives aaa/aX, aP,/ax, aua/ax, and a-ffz/ax. If for the moment we restrict 
our attention to the case of turbulent gas-turbulent liquid flow, so that CL = Ca = 0.046, 
n = m = 0.2, the void fraction gradient can be written in nondimensional form, using 
[10]-[12], as 

1 daa 12Ca[( I7" )-n . j~2-, 
(Re*-"--~ ~ -  -- [ - - ~ L \ ~ I  (~' + a tSa) " -d'~c 

~2. jJ  2 - aa ;,21 
a a~"L I '  

[13] 

where 

Ca = 0.046, n = 0.2 

and 

D ~/gD(pL-pO) 
Re* = -  - - -  , 

r a y  Pa 

K va P~ 
VL 

[ 1 4 ]  

[15] 

I = Re *n sin ~ ,  [16] 

and ~ = x /D,  etc. Referring to figure 2, the nondimensional perimeters and the void 
fraction can be expressed in terms of the angle 0 (radians) using 

Sa = Ir - 0, SL = 0, S, = s i n 0 ,  

a a  = 1 - 1 r r ( 0 - ~ s i n 2 0 ) .  

[17] 

Using [17], Sa, SL, and S~ can be expressed as functions of aa only. 
Critical velocity. It is seen from [13] that daa/dx -~ oo when a a  satisfies the equation 

l raLaa aL ,2 _- jp = O. [181 



548 k H ARDRON a n d  s BANERJEE 

For j *  = 0, this reduces to 

j z  = 
V 45", 

which for Pc << PL is the same as 

uL = . [19] 

Equation [19] is the classical equation for the critical velocity in a channel of arb|trary 
cross section (Chow 1959). Since the condition (daa/dx) -"  oo can be applied at the pipe 
exit in a free out-fall, the two-fluid formulation thus correctly describes the exit conditions 
in this case. Inclusion of the term in j *  in [18] shows how the exit (critical) depth is modified 
by a countercurrent gas flow; this correction is not normally accounted for in open channel 
flow analysis. 

In the following we will assume that the critical flow condition [18] Is satisfied in the 
pipe exit plane at E. It should be noted that this assumption introduces some error. In 
actual fact, because of two-dimensional effects, the critical velocity m a round pipe does 
not occur exactly at the end of the pipe, but rather one or two diameters upstream (see 
Smith (1962). For present purposes, since we are considering pipes with a large length-to- 
diameter ratio, that correction to the one-dimensional theory will be ignored. 

3.3 Calculation of flooding curve 
Equation [13] can be written as 

1 d a ,  

(Re*-") d~ 
-- f ( aa ,  j * , l ~ ,  K,  I ) .  [20] 

Refernng to figure 1, [20] can be integrated between the hydraulic jump C and the exit E 
t o  g i v e  

), L (Re*-") f~c~ da  a [21 ] 
- D - -  ~, f (a~ ,  j~- -~-$ ,  K ,  I ) '  

where L Is the distance CD (identified with the length of the lower limb of the elbow) and 
the subscripts o and i refer to conditions at the pipe exit (critical plane) and at the crest 
of the hydraulic jump, respectively. 

Now [I] provides a relationship between aaa andj*~ just before flooding inception and 
[18] relates ac, o to j *  and j~ .  Thus [I], [18], and [21] give a relationship between j ~  and 

j * at flooding, in terms of the nondimensional parameters h, I ,  and K, where h is a modified 
length-to-diameter ratio for the lower limb of the elbow defined by [21], 1 is an inclination 
parameter defined by [16], and K is a nondimensional group depending only on fluid 
properties defined by [ 15]. Values of K for some common two-phase mixtures are listed in 
table I. 

The solution of these equations was calculated numerically for different combinations 
of h, K, and I.  The steps in the solution were as follows: 

(i) calculate particular values for X, K, and ] appropriate to system of interest; 
(ii) postulate jr*; 

(iii) guess the value o f j ~  that would give flooding at the chosen value of j*; 
fly) calculate aa, using [1] (wi th j~  = 0.2); 
(v) calculate ac, o by iterative solution of the critical depth equation [18]; 

(vi) calculate the integral in [21] numerically using Simpson's Rule (a twenty step inte- 
gration was used). This gives the value of X compatible with the selected values of 
j~ and j~; 
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Table 1. Values of K for vanous two-phase mzxtures 

Two-phase mixture K 

Air-water (T = 25"C P = 100 kPa) 0.61 
Steam-Water (T = TSAT P = 100 kPa) 1 73 
Steam-Water (T = TSAT P = 5 0 MPa) 0.47 
Freon 113 (T = 25"C P = saturation pressure) 0.33 
Freon 12 (T = 25"C P = saturation pressure) 0.41 
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(vii) repeat steps (ii)-(vi) until the calculated ~. from step (vi) agrees with the actual value 
imposed in step (i) to within 0.1%. 

3. 4 Numerical results 
(a) Horizontal lower limb. We first consider the case where the lower limb of the elbow 

is perfectly horizontal  ( / =  0). Numerical  results are displayed in figure 3. These calculations 
are for a turbulent gas-turbulent liquid conditions (n = 0.2, Ca = Cz = 0.046). The 
range of K values covered embraces many  two-phase flows of common  interest (see table 
1). The effect of the K parameters is seen to be only weak. 

Over the parameter  range shown in figure 3, 

l < X < 1 6 ,  

0 . 5 < K <  1.8, 

0 <j,l/2 < 0.6, 

the flooding curves can be represented with reasonable accuracy by the convenient equation 

j~l/2 = I.A.A.A. -- 0.004 ~. -- cosh (XP Kq (j,I/2),), [22] 

where 

p = 0.057, q = -0.020,  r = 0 .70 .  

The R M S  error in j~l/2 obtained by using [22] instead of the numerical results is under 2%. 
This equation can therefore be regarded as a physically based flooding correlation for 
countercurrent  gas - l iqu id  flow in a horizontal-to-vertical pipe elbow. 

I I I I I I 
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Fzgure 3a 
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Ftgure 3 Calculated floochng curves for turbulent gas-turbulent hqmd flow Vertlcal-to-honzontal 
elbow. 

An mteresting hmiting case is that of an ideal frictionless in the vertical-to-honzontal 
elbow. For this case a a, = ac, ,  and the flooding curve is obtained simply by eliminating 
a6 between [1] and [18]. For 0 • jr* • 0.9, the flooding curve thus obtained is described 
accurately by the quadratic fit: 

]~/2 = 0.447 - 0.176j~ ~ - 0 .263j* ,  [23] 

whtch ts, of course, independent of h and K. Equation [23] is plotted in figure 4 as the 
line marked "frictionless flow". It is seen that friction has a significant effect on the flooding 
limit for the cases shown. 

(b) Upwardly inclined lower limb. The effect of a small upward inclination of the lower 
limb of the elbow is to increase the upward slope of the liquid interface in the direction of 
the hydraulic jump. Since for given values of j*  a n d j ~  the liquid depth at E is fixed at the 
critical depth (obtained by solving [18]) the steepening of the interface slope causes an 
increase in the height of the hydraulic jump; the consequence is a reduction in the gas flow 
rate needed to cause flooding. 
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Figure 4. Effect of upward inclinations on flooding curve for different length-to-diameter ratios. 
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Results of numerical calculations for different values of the mchnatlon parameter i 
(> 0), are given in figure 4. Again the calculations assume turbulent gas-turbulent hquld 
flow. The results are all for K = 1.0, but the curves are reasonably accurate for the range 
of K values in table 1. It should be noted that all the calculations assume that the condmon 
for slugging at the hydraulic jump is given by [1], i.e. that the instability condition ts the 
same in an inclined pipe as in a horizontal pipe. 

It can be seen that small upward inclinations have a marked effect on the prechcted 
flooding curve, particularly for large values of the length parameter ~. (note that for 25°C 
air-water  flow in a 50 mm diameter pipe a value of I of 0.5 corresponds to an upward 
inclination on only 3.4°). As the inclination is increased the maximum hquid downflow that 
can be achieved for a given gas upflow decreases further and further. Eventually a threshold 
inclination ]s predicted where complete liquid carry-up ( j*  = 0) occurs even m the hmlt 
where gas flow rate approaches zero, j *  -. 0, implying that countercurrent flow is now 
impossible. Physically, this threshold upward inclination corresponds to the point at which 
the slope of the interface is such that the liquid bridges the pipe at C, even m the absence 
of gas flow. By making the substitutions j *  = j*  = 0, ac, o = 1, aG, : 0 in [21] and [13] 
this critical inclination is calculated as 

l D 
I =  ~ o r s m ~ b - -  L ' [24] 

which is the result that one also obtains from simple geometrical arguments. 
(c) Downwardly inclined lower limb. The effect of a downward inclination of BE 

(I < O) is to reduce the height of the hydraulic jump. Beyond a threshold value of the 
downward inclination (typically less than 0.5") [13] predicts that dct g/d~ becomes negatwe 
in subcritical flow, implying that the approach to critical flow at E cannot occur. The only 
physically meaningful solution now is one where the liqmd velocity is supercriUcal every- 
where in the lower limb of the elbow, Implying that a hydraulic jump cannot exist. 

Since flooding in an elbow with a downwardly inclined lower limb in which there is 
supercritical flow has not been studied experimentally in any detail, no theoretical analysis 
of this interesting case is attempted herein. It should be noted however that the present 
model, which assumes a subcritical flow in the lower limb of the elbow, is not applicable 
for this case. 

I I | I I 1 I 
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Figure 5. Sensmwty of flooding curve to variations m mtcrfacml friction modchng. 
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3.5 Effect of different assumptions about interfacial shear 
The above calculations are all for a turbulent gas-turbulent liquid flow where the 

interface shear stress is equal to the wall shear stress in the gas phase. In practice laminar 
flow would be expected in the limits j~ --, 0 andj*~ -- 0, and it is interesting to examine 
the effect this will have on the predicted flooding curves. Figure 5 shows a particular 
example of atmospheric pressure air-water flow in a 50 nun diameter vertical-to-horizontal 
elbow with D = 50 mm, L / D  = 50 (corresponding to K = 0.61, h = 5.45, 1 = 0). The 
flooding curve predicted using the turbulent- turbulent  assumption is shown as the solid 
line. The dotted line is the curve obtained by allowing the friction factors to transition to 
laminar flow values for Rek < 1500. It is seen that ignoring the transition to laminar flow 
makes very little difference to the calculated flooding curve. 

We have also investigated the effect of using different formulations for the interracial 
friction factor. Govier & Aziz (1972) recommended that for cocurrent stratified flow with 
a smooth interface, the interfacial shear stress can be calculated from the formulae 

"r~' = ~ f ,  Pc u 2  f ,  = 1.29 Re~ "°~7 , [251 

where f ,  denotes the interface friction factor. The flooding curve calculated using [25] is 
shown as the broken line in figure 5. Again it is seen that this refinement in the calculation 
of a't: has a negligible effect on the predicted flooding curve. The flooding curve for frietionless 
flow [23] is also included in figure 5. It is seen that interface and wall friction have a 
significant effect on the flooding hmit for the example shown. 

4. COMPARISON WITH EXPERIMENTAL DATA 

In part I we described measurements of countercurrent flooding limits for atmospheric 
pressure a i r -water  flow in several horizontal-to-vertical pipe elbows. Limited data were 
also presented where the lower limb of the elbow was upwardly or downwardly inclined. 
The range of tube geometries used in the tests were 

36mm < D < 47 mm, 
2 4 < L / D  <95 ,  

0 < R e  < 300mm, 
-0.6* < qb < 0.6*, 

where D and L / D  denote the tube diameter and length-to-diameter ratio of the horizontal 
leg, respectively, and R c is the radius of curvature of the elbow. 

Representative data for the horizontal-to-vertical elbows ((k = 0) are compared with 
predictions of the present theory in figures 6-8.  The predictions are shown as bands to 
reflect the experimental uncertainty in the true inclination of the lower limb of the elbow, 
estimated as 2t2 0.03 ° (the upper and lower edges of the bands correspond to the flooding 
curves predicted assuming an inclination of -0.03 ° and + 0.03 °, respectively). Overall 
agreement is reasonable, and the gas flow for complete liquid carry-up (j~ = 0) is quite 
well predicted. The main discrepancies are the underprediction of flooding limit for the 
shorter tube lengths, L / D  < 30 (see figure 7), and the failure of the model to account for 
the observed effect of R c on the flooding limit. The errors are probably due mainly to the 
use of [1], with "* Je~ = 0.2, to describe the onset of slugging at the hydraulic jump. It is 
seen from an examination of the data in part I that j~,, varies between 0.15 and 0.25 for 
the experimental conditions and this variation could easily explain the discrepancies. In 
pract icej~ probably depends on the shape of the hydraulic jump, which in turn, is influenced 
by the geometry of the pipe, and in particular the shape of the bend. However, no attempt 
has been made as part in this investigation, to correlate the effective value ofj~,, with system 
geometry. 

Figure 9 shows a comparison with the limited data given in part I where the lower 
MF 1 2 " 4 - D  
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Fnsure 6. Compmason wtth data for rounded elbows with different L / D  ratms (D = 35 5 ram). 

hmb of the elbow was initially inclined. The model predictions are again shown as bands, 
reflecting the + 0.03* experimental uncertainty in the inclination. The experimental trends 
are seen to be quite well represented by the theory, although additional data are obviously 
needed to confirm this agreement. For the ease where the lower limb of the elbow 
Is downwardly inclined (upper curve in figure 9) the present model becomes invalid for 
j ~ / :  > 0.2, when a transition to supercritieal flow is predicted (see section 3.4(c) above). 

Krowlewski (1980) reported measurements of flooding limits for air-water flow in a 
horizontal tube connected at inlet to a 90* vertical elbow. In her tests the tube dimensmns 
were D = 51 ram, L / D  = 11.5. The onset of flooding was taken as the point at which 
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Ftgurc 7 Comparison of theory with data for dafferent radius of curvature values (L, ID = 47, 
D = 44.0 ram) 
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Figure 8. Comparison of theory with data for square elbow, R# = 0, D = 44.0 ram. 
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the pressure drop across the test section increased sharply as the gas flow rate was gradually 
increased. Three geometrical configurations were used, as illustrated in figure 10. 

Kxowlewski's data are plotted in figure 11. There is a noticeable difference between 
data for configuration A and data for configurations B and D, indicating that the flooding 
limit is sensitive to details of the horizontal leg exit geometry. This effect was also noted 
in our experiments described in part I and is believed due to the influence of exit geometry 
on critical exit depth. Predictions of the theory are also shown in figure 11. Agreement for 
configurations B and D is reasonable, but the gas flow rate required for flooding in con- 
figuration A is over predicted. The fact that the best agreement is obtained for cases B and 
D is not surprising, since the exit conditions in these cases correspond most closely to the 
free out-fall condition assumed in the model. 
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Ftgure 9. Comparison of theory with data showing effect of mchnation (theory and data for 
L / D  = 57, D = 36.5 ram). 
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5. C O M P A R I S O N  W IT H O T H E R  F L O O D I N G  MODELS 

Figure 12 compares predictions of the present model with those of the Wallis (1969) 
correlation for a vertical tube (sharp-edged entry) and those of the Gardner (1983) model 
for a horizontal tube. The calculations are for an a i r -water  flow in a tube with D = 36.5 
mm, L / D  = 57. Also shown are the experimental data for this case taken from figure 6. 
It is seen that the air flow required to produce flooding in a horizontal tube is much smaller 
than the air flow predicted for an equivalent vertical tube, using the Wallis correlation. The 
Gardner model predicts a lower flooding limit over part of the range, but does not agree 
well with the data. Also, this model predicts that the air flow rate for complete carry-up 
(JL'* = 0) is close to j *  = 1. l, whereas the data show that complete liquid carry-up occurs 
at j ~ ~_ 0.2, representing a major discrepancy. The present model reproduces the data 
trend fairly well, and gives the complete carry-up limit wtth reasonable accuracy. 
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6. CONCLUSIONS 

A theoretical model has been developed to predict the flooding limit in a pipe elbow 
of which the upper limb is vertical and the lower limb is horizontal or inclined slightly. 
The model assumes that prior to flooding, a smooth stratified flow exists in the lower limb 
of the elbow. A free out-fall is assumed at the exit where the liquid velocity is equal to the 
critical velocity for open-channel flow. Flooding is assumed to occur because of the formation 
of unstable waves (slugging) at the crest of a hydraulic jump located in the lower limb of 
the elbow close to the bend. The flooding curve is calculated by solving for the stratified 
two-phase flow in the lower limb of the elbow. 

The model has been used to develop a generalized flooding curve for a horizontal-to- 
vertical elbow in terms of nondimensional parameters. Calculated flooding limits for an 
elbow where the lower limb is upwardly inclined have been presented in graphical form. 

The theory has been found to give a reasonable representation of available flooding 
data for elbows. In particular the observed trends with respect to the length and inclination 
of the lower limb of the elbow are quite well described. The model appears to be a significant 
improvement over alternative methods for predicting flooding in pipe geometries of this 
kind. 
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